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Tensile strength and fracture surface

characterisation of sized and unsized glass fibers
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The tensile strength of commercial glass fibers is examined by single fiber tensile tests. The
fibers are analysed as received from the manufacturer (sized) and after a heat treatment at
500◦C (unsized). Weibull plots of the two series are used for comparison of the strengths of
the sized and unsized fibers. It is shown that large sample sizes (over 60 tests) are required
to lead to a reliable two-parameter Weibull distribution. The experimental tests clearly
indicated that the unsized fibers were weaker in the low strength range, but had similar
strength in the high strength range. An investigation of the fracture surfaces in the SEM
showed distinct differences in the fracture patterns for high and low strength fibers.
Fracture mechanics were applied to estimate the original flaw size and relate the observed
fracture mirror surface to the fiber strength. Based on the observation of surface flaws, a
“healing” mechanism by the sizing is considered likely for this type of fiber and sizing,
thereby effectively increasing the strength of the fiber in the presence of larger surface
flaws. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
The manufacture of large structures, i.e., wind turbine
rotor blades up to 45 m length or boat hulls, requires
a good strength to weight ratio to avoid fracture of the
material due to its own weight. Glass fiber reinforced
composites are designated materials for these applica-
tions. Glass fiber is one of the high performance fibers
for composites, and often chosen because of its lower
cost in comparison to carbon fiber. However, compos-
ite strength in fiber direction is directly influenced by
the fiber strength, which shows a large scatter. Fiber
strength can be described by the weakest-link theory,
which assumes that a given volume of material will fail
at the most severe flaw. Size effects occur due to the
decreased probability of a smaller volume containing
severe flaws. It turns out that such a material is well
described by the statistical distribution known as the
Weibull distribution [1–4].

Traditionally, glass fibers are coated during produc-
tion with the so-called fiber sizing, consisting of a
water-based formulation of a coupling agent, a film
former and other components [5]. The coupling agent
is usually a silane-based molecule with reactive ends
connecting to the glass and the matrix, respectively.
Composite properties can be tailored by modifying the
physico-chemical link between fiber and matrix [6], but
the entire mechanism of the sizing interaction with fiber
and matrix is not yet fully understood.
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Optimisation of fiber sizings can require re-sizing
and handling of unsized fibers. It is therefore important
to consider the effect of sizing on the tensile strength
of fibers. While the sizing fulfills the aim of improv-
ing the interfacial adhesion between the fibers and the
resin, it furthermore protects the fibers during the pro-
cessing from abrasion and environment [7]. The latter
is important, as glass can be susceptible to subcritical
crack growth assisted by, for example, moisture from
the environment [8]. Zinck et al. [2] proposed recently
that the application of sizing can “heal” surface flaws of
fibers by filling severe flaws with a three-dimensional
network of the silane coupling agent, which forms a
covalent bond with the glass and thereby effectively
reduces the depth of the surface flaw.

In this paper, the strength variation between sized
fibers and fibers without sizing (burned off at 500◦C) is
examined by applying Weibull statistics. The nature of
flaws influencing the single fiber strength is determined
by characterising the fracture surfaces in the scanning
electron microscope (SEM). Glass shows characteris-
tic fracture markings after failure [9, 10]. These frac-
ture characteristics have also been observed for optical
fibers with large diameters of the order 100–200 µm
[11] and for fiber breakage within ceramic compos-
ites [12]. By using information regarding the type of
fracture, we can increase the understanding of how the
tensile strength of glass fibers is affected by fiber sizing.
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TABL E I Fiber specifications

Glass type E-glass

Fiber diameter (average) (µm) 15.6
Fiber standard deviation (µm) 2.1
Minimum diameter (µm) 10.2
Maximum diameter (µm) 23.4
Type of sizing Silane
Sizing percentage (wt%) 0.55

2. Experimental method
First, some general information about the fibers is pre-
sented. The fibers examined are standard E-glass fibers
with specifications as shown in Table I. The large differ-
ences in the measured diameters ranging from 10.2 to
23.4 µm emphasise the need of determining the individ-
ual fiber diameters prior to each single fiber test. These
values in Table I were established by 3-D X-ray syn-
chrotron micro-tomography [13] to examine the cross-
sectional areas of the fibers embedded in an epoxy ma-
trix. The high-resolution tomography work with a spa-
tial resolution of 0.7 µm was undertaken by Swiss Light
Source, Villingen, Switzerland. The use of tomography
results has the advantage that the fiber cross-section is
not altered as it normally occurs by polishing the surface
for conventional microscopy. The average diameter of
15.6 µm agrees with the manufacturer’s specification
of 16 µm.

Fibers were tested (1) as received from the manufac-
turer and (2) after heat treatment of 1 h at 500◦C in an
oven, followed by cooling down to room temperature.
Related research by the authors [6] has shown that this
procedure removes most of the sizing layer, with the
possibility of small amounts of sizing residues left on
the surface.

A cardboard frame (see Fig. 1) with holes stamped
at a fixed distance resulted in a gauge length of 20 mm.
Single fibers were mounted by applying Impega white
tack (re-usable adhesive) at both ends to obtain a ver-
tically positioned fiber on top of this frame with a pre-
stress defined by the weight of the adhesive. The fiber
was glued onto the cardboard frame with Loctite 406,
as indicated in the figure. The fibers were kept in a plas-
tic bag between measurements to avoid contamination
by dust and other particles.

Fig. 1 shows a dotted line, where the holder is cut
into two pieces for the strength and diameter measure-
ments, respectively. For the latter, a Leitz Aristomet
microscope was used with a magnification of 500X.
Each fiber diameter was photographed 10 times at dif-
ferent locations over the length of 20 mm to obtain a

Figure 1 Cardboard frame with fiber resulting in fixed gauge length.

meaningful average value and standard deviation along
the fiber length. The method of diameter measurement
on a separate fiber sample was chosen to avoid damage
of the sample used for tensile strength. During handling
of the fiber in the microscope, the fiber can be in contact
with the objective due to bending of the cardboard and
might be scratched.

An Instron tensile test machine (TT-CM) was
equipped with a 20 N load cell, which was calibrated
to 10 V output for 5 N load due to the low loads ex-
pected (typically less than 0.5 N). The cardboard frame
was aligned and carefully gripped at the ends to ensure
a vertically positioned fiber. Before tensile measure-
ment, the middle piece of the holder was cut away as
indicated in Fig. 1. The fibers were tested at a fixed
displacement rate of 0.5 mm/min.

For analysis of the fracture surfaces in the SEM, the
broken fibers were removed carefully from the card-
board frame and inserted into a sample holder. The
holder consisted of two metal blocks with two well-
polished surfaces, which could be pressed together by
screws. One surface was covered with glue tape to at-
tach the fiber while the two surfaces of the holder were
pressed together. Up to five samples were mounted at
the same time. It should be noted that the fibers were
not allowed to stick more than 50–100 µm out from
the sample holder, as sample vibration would cause un-
stable pictures in the SEM. The fibers and the sample
holder were gold-sputtered for 20 s and afterwards in-
vestigated in a JEOL 840 SEM under high vacuum.
Pictures were taken at a magnification of 5000× and at
a voltage of 15 kV.

3. Data analysis
The tensile strength is calculated as follows:

σTS = F

A
= 4F

πd2
, (1)

where F is the fracture load and d the measured fiber di-
ameter. The experimental uncertainty was furthermore
established to obtain an error estimate for the experi-
ment. The combined uncertainty of the measurement is
evaluated as follows [14]

µ2
TS = µ2

F + 4µ2
d, (2)

where the total coefficient of variation on the tensile
strength (µTS) is determined by the coefficient of vari-
ation on fracture load (µF) and diameter (µd). The co-
efficient of variation, µ, is obtained be dividing each
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sample standard deviation, s, by its sample mean, x̄ :

µ = s

x̄
with x̄ =

∑n
i=1 xi

n
and

s =
√∑n

i=1 (xi − x̄)2

n − 1
(3)

where xi indicates the value of the ith measurement
and n is the total number of measurements undertaken.
Since the diameter measurement contains two sources
of uncertainty ((1) along the fiber length, µd1, and (2)
due to the measurement on the “extra piece”, µd2),
which are not dependent on each other, µd can be de-
termined by adding both values in quadrature as shown
in Equation 4.

µd =
√

µ2
d1 + µ2

d2 (4)

The resulting standard deviation, sTS,i, which can be
evaluated for each strength measurement, σTS,i, is as
follows:

sTS,i = µTSσTS,i (5)

A statistical analysis of the fiber tensile strength is com-
monly made by using the two-parameter Weibull dis-
tribution [1]. We can write the probability of failure
PF (σ ) of the fiber at a stress σ and length L as

PF(σ, L) = 1 − exp

(

− L

L0

(
σ

σ0

)m)

, (6)

where m is the Weibull modulus, σ0 the characteristic
strength and L0 is the gauge length. The Weibull mod-
ulus m is a measure of the scatter in the tensile data.
Rearranging the equation above for testing at a fixed
gauge length of 20 mm (no volume size effect consid-
ered, L = L0), we obtain

ln

[

ln

(
1

1 − PF(σ )

)]

= m ln σ − m ln σ0. (7)

For comparison of the characteristic strength value σ0 at
a different gauge length L1, Equation 6 can be rewritten
as

σ0(L1) = σ0(L0)

(
L0

L1

)1/m

. (8)

One arranges the tensile strength values of the fibers
in ascending order and assigns a probability of failure
using an estimator given by

PF(σi) = i − 0.5

N
, (9)

where PF(σi) is the probability of failure correspond-
ing to the i th strength value and N is the total number
of fibers tested. This expression for the probability of
failure is recommended if the Weibull parameters are

determined by linear regression [15]. From Equation
7, we can see that the function on the left side varies
linearly with ln(σ ) and the Weibull modulus is given
by the slope, m. It is therefore easy to obtain m and σ0
by linear regression. The goodness of the linear fit to
the Weibull distribution has been used [2] to give an
indication of the presence of multiple flaw population,
i.e., the presence of surface flaws and/or bulk flaws. The
question arises, however, as to how many samples are
required to accurately describe and compare a strength
distribution with the Weibull distribution. Sample sizes
for fiber testing in the literature are reported between
40 [2] and 150 [3] samples. The necessary sample size
is discussed in the next Section.

4. Results
To check the reliability of the testing set-up, the Young’s
modulus was calculated for each single fiber test. The
displacement was calculated from the cross head speed
of 0.5 mm/min and time, and afterwards divided by the
gauge length to obtain the fiber strain. The latter as-
sumes a uniform strain distribution along the fiber. The
stress is calculated by dividing the load by the fiber area,
which is calculated from the diameter measured for
each fiber as described above. The experimental stress-
strain curve was linear as expected for brittle fibers.
Young’s moduli were calculated from the slope of the
linear least squares fit. The values are shown in Ta-
ble II. The average values of 66 GPa are slightly below
common values in the literature of about 74 GPa [7].
However, the present calculation of the strain neglects
the machine compliance during testing and assumes a
gauge length of exactly 20 mm. Both aspects increase
the Young’s modulus further as (1) the applied displace-
ment decreases if machine compliance is accounted for
and (2) the real gauge length increases with deformation
of the fiber in the glue area. Nevertheless, the Young’s
modulus serves as a good experimental check with its
current accuracy. No fibers were found during testing
that deviated far from the values in Table II as seen by
the low standard deviation of the values.

For the uncertainty analysis, the actual value of µF
could be calculated based on Equation 3 from the in-
dividual force measurement, xF, and a constant value
for the standard deviation of sF = 0.012 N as estab-
lished from the electronic load cell noise. Regarding
the diameter measurement uncertainty in Equation 4,
µd1 was based on the value for the standard devia-
tion sd1 and the corresponding average diameter, x̄d1,
from the 10 measurements on the extra fiber piece. The
value of µd2 was established by correlating measured
diameters of 10 fibers with the diameter at a distance
of 20 mm along the same fiber, which corresponds to
the distance between extra piece and fiber in the sam-
ple holder in Fig. 1. A constant value was established

TABLE I I Young’s moduli as determined from stress-strain curves

Young’s modulus (GPa) Std. deviation (GPa)

Sized fibers 65.6 4.8
Unsized fibers 66.9 5.3
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Figure 2 Weibull plot for sized fibers to determine the necessary batch
size.

for the coefficient of variation with µd2 = 1.8%. The
relatively small coefficient of variation shows that the
fiber diameter does not vary largely along a given fiber,
although large diameter variations are found between
different fibers (see Table I). The resulting error bars
in Fig. 3 correspond to the value of ± one standard
deviation sTS according to Equation 5.

Weibull plots according to Equation 7 of the sized
fibers are given in Fig. 2. The distribution with square
markers is a pre-testing examination of 29 fibers to es-
tablish the testing method, and the distribution with cir-
cle markers is an additional data set of 74 tested fibers
from the same glass fiber bobbin. As can be seen, the
plot for 29 fibers does not give a straight line, although
the maximum and minimum strength values for both
series are similar. The larger series of 74 fibers, on the
other hand, results in a mostly straight line. Compar-
ison of both curves shows that by random selection
more high strength than low strength fibers (only two
data points describe the lower end of the curve) were
evaluated during the pre-test series. It therefore became
clear that 29 fibers were not a sufficient number to give
reliable strength results. However, if both sets are com-
bined to one data set containing 103 fibers, the line
nearly coincides with the full test series, which means
that no additional information is gained by adding more
test samples. It was therefore decided to use around 75
samples for the unsized fibers.

The difference between the unsized and the sized
fibers is presented in Fig. 3. Both the sized and unsized
fibers have very similar high strength values, while

Figure 3 Weibull plot comparison between sized and unsized fibers (er-
ror bars indicate the combined measurement uncertainty).

there are clear differences to be seen in the low strength
region. A threshold value of about 1200–1400 MPa is
indicated, above which the application of sizing does
not seem to improve the fiber strength. The difference
in scatter between low and high strength is reflected in
the Weibull slopes, msized = 4.6 and munsized = 3.1, of
the linear curve fitting equation, while σ0 is very similar
for both systems. Table III shows the resulting Weibull
parameters for the sized and unsized fibers. Both fiber
types show very good agreement with a linear fit as
established by the R2 curve fit value, which points to-
wards one type of flaw population causing fiber fail-
ure. Comparison of the sized fiber values with typical
values in the literature for similarly sized glass fibers
[3] shows very good agreement as shown in Table III.
The volume size effect was accounted for according to
Equation 8. It should furthermore be noted that an eval-
uation of the Weibull parameters with the probability
Pf = i/(N + 1) instead of Equation 9 or by applying
the maximum likelihood method does not change the
parameters significantly.

TABLE I I I Weibull parameters of the sized and unsized fibers (R2:
statistical evaluation of quality of least squares fit; L: gauge length)

Fiber treatment m σ0 (MPa) L (mm) R2

Sized 4.62 1680 20.0 0.98
Unsized 3.09 1649 20.0 0.96
Sized 4.62 2153 (Equation 8) 6.35 –
APS-sized [3] 3.75 2220 6.35 –
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Figure 4 Low strength fracture surface.

Figure 5 Schematic showing of typical glass surface features that form
during failure.

Fracture surface evaluation was undertaken for se-
lected fibres. The fibers were divided into low, medium
and high strength ranges. Characteristic, and very dif-
ferent, fracture patterns were observed for low strength
and high strength fibers. The typical fracture pattern
for low strength fibers can be sketched in Fig. 4 for two
samples. It can easily be observed that fracture seems
to originate from one side of the fiber as indicated by
the fracture mirror with smoother surface. From this
point, fracture patterns cross the remaining fiber di-
ameter. These observations are identical with the char-
acteristic fracture surface markings in glass after fail-
ure from surface flaws. During failure from an initial,
small surface flaw of length c, the crack front propagates
through the material, creating fracture features known
as the mirror, mist and hackle as seen in Fig. 5 [10, 11].
The crack front initially produces the smooth mirror

region. As the crack accelerates, it becomes unstable,
thereby creating a dimpled surface known as mist. This
instability eventually causes the crack to branch out,
producing the rough hackle region. The hackle region
is characterised by elongated markings that proceed in
the direction of crack propagation and point back to the
flaw origin. The measurements of the fracture mirrors
are also indicated in Fig. 4. A mist region could not be
observed at this scale. The same fracture pattern was
observed for all low strength fibers (with and without
sizing) and some medium strength fibers. Matching pat-
terns on fiber ends originating from the same fiber were
furthermore observed.

For high strength fibers on the other hand, two ba-
sic types of failure pattern were identified. Fig. 6 vi-
sualises the first type of two-plane fracture, which was
seen most frequently. Fiber fracture again originated
from a point on the surface as indicated by the visible
hackle region. Fracture mirrors were only observed on
some fracture surfaces (for example Fig. 6a, but not
b). After propagating through most of the fiber cross-
section, the crack continued at an angle: a second failure
plane was created. This could be caused by a more dy-
namic crack development due to higher strain energy.
All fracture mirror measurements are summarised in
Table IV. The second type of failure, on the other hand,
showed smooth fiber breakage without any indication
of a surface fault. Fig. 7 visualises the smooth failure
surface for two samples. Unfortunately, it was not pos-
sible to confirm that we were indeed looking at the
original fracture surface for these high strength fibers
with smooth fracture patterns because no matching fiber
pair was available during investigation. This is due to
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Figure 6 Two plane failure pattern for high strength fibers.

frequent break-off of fibers from the card board frame
after testing. The fracture surfaces could therefore well
be a result of secondary breaks caused by bending of
the fiber during fracture.

The size of the fracture mirror relates to the pre-
existing flaw size and, consequently, the strength of
the fiber [12]. Fracture mirror dimensions according to
Fig. 4 were observed and measured on eleven fracture
surfaces. The mirrors all have circular shapes, and the
resulting values for mirror radius and depth (for a defi-
nition see Fig. 5) were given in Table IV. It can be seen

TABL E IV Observed mirror dimensions.

Fiber strength Mirror radius (rm) Mirror depth (dm)
Fiber (MPa) (µm) (µm)

US25 649 2.9 3.2
US05 809 3.1 2.8
S66 995 3.3 7.5
US17 1166 2.8 2.5
US40 1288 3.0 4.2
S75 1292 3.5 3.1
US38 1340 2.6 3.1
S40 1391 3.2 4.0
S28 1735 2.1 3.0
S09 1779 1.7 1.5
US08 1961 1.8 1.6

S: sized fiber, US: unsized fiber.

Figure 7 Smooth failure pattern of high strength fibers.

that higher strength fibers have smaller fracture mirror
dimensions.

It has been demonstrated [9–11] that the product of
fiber strength and the square root of the mirror radius
rm is constant in silicate glasses:

σTS = Am(rm)−1/2, (10)

where Am is the so-called mirror constant. For optical
glass fibers, the mirror depth dm instead of the mirror
radius has been shown to lead to better least square
fitting of the mirror constant especially for larger mirror
sizes with up to 90% of the fiber cross-sectional area
[11]. This is due to the fact that large fracture mirrors on
fiber cross-sections can deviate from the semi-circular
shape. Table IV also indicates that the mirror depth and
mirror radius are considerably different in our case.

Fig. 8 shows the values of the failure stress plotted
versus the reciprocal square root of the mirror depth.
The mirror depth was chosen to describe the size of the
mirror, as it resulted in better consistency for the mirror
constants according to Equation 10 with enforcing the
zero point for the linear fit (Am = 2.22 MPa m1/2) and
without (Am = 1.87 MPa m1/2). The least squares fit
is not overly satisfactory (R2 ≈ 0.35); however, the
fitted value for the mirror constant lies well within the
range of 1.8–2.5 MPa m1/2 reported in the literature for
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Figure 8 Fracture stress versus reciprocal square roots of mirror depths
with least-squares linear fit through the zero point.

glasses [10] and optical glass fibers [11]. It is therefore
likely that the relationship between fracture mirror and
failure stress (Equation 10) also applies in the case of
a very small cross-sectional fracture area.

5. Discussion
The results indicate that the heat treatment, which is
well below the glass transition temperature of around
800◦C, does not alter the material strength significantly,
as a structural change of the glass should lead to a shift
of the complete strength range for the heat-treated, un-
sized fibers. The change in fiber strength in the low
strength range must therefore be attributed to the re-
moval of the sizing layer.

As shown in the previous section, low strength frac-
ture is indeed caused by surface flaws, which was estab-

Figure 9 (a) Filling of severe surface flaws by fiber sizing [2] and (b) treatment in the framework of linear elastic fracture mechanics.

lished from the typical fracture pattern on the fracture
surface. The decrease in strength could be an effect
of subcritical crack growth after sizing removal. How-
ever, that would most likely affect all cracks, i.e., cause
a strength decrease for all fibers. This is not consistent
with the experimental results in Fig. 3.

Zinck et al. [2] proposed that the application of siz-
ing can “heal” surface flaws of fibers by filling se-
vere flaws with the silane coupling agent. By chemi-
cal surface analysis, Wang and Jones [16] confirmed
a silane structure based on three layers on the glass
surface. These layers consist of (1) an “interfacial”
layer, which is covalently bound to the glass surface
and remains grafted after a hot water or solvent ex-
traction, (2) a chemisorbed threedimensional layer of
polysiloxane and (3) a physisorbed layer of oligomers
(non-covalently bound macromolecular aggregates of
the silane coupling agent). These layers can alter the
effect of surface flaws by filling up part of the cracks as
proposed in Fig. 9a, but the synergetic effect depends
on the original depth and shape of the surface flaw.

Zinck et al. [2] also introduced the concept of a crit-
ical threshold flaw size, below which defects are not
healed. The existence of a critical threshold explains
the similar high strength of both fiber treatments as the
existent surface flaws become simply too small to be ef-
fectively filled by the molecules of the silane coupling
agent (see Fig. 9a). Chemically, the threshold size is
then related to the hydrodynamic radius. The hydro-
dynamic radius describes the size of a molecule and
must be smaller than the surface flaw. Previous research
by the authors established the presence of an amino-
containing silane coupling agent on the fiber, together
with an bisphenol-A based epoxy film former, and
various other sizing components [6]. Aminofunctional
silanes are special as they dissolve instantaneously in
aqueous solutions, and form oligomers already at very
low weight percentages of around 0.15 wt%, which is
important to consider as silanes are normally applied
to the fibers from very dilute aqueous solutions. For
hydrolysed γ -APS, the most typical amino-containing
silane coupling agent, the hydrodynamic radius was
established to peak around 150 nm in a weak solution,
and attributed to aggregates of smaller molecules rather
than inseparable molecular species [17].

Fracture mechanics are applied in the following to
firstly determine the shapes of the surface flaws present
more closely, and to secondly establish the size of
the flaws present in the tested fibers. The chemical
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threshold value required for the “healing” effect by the
silane coupling agent was established to around 150
nm for surface flaws based on the hydrodynamic ra-
dius. The crack shape should furthermore relate to the
strength threshold value as established from the Weibull
plot in Fig. 3.

Planar cracks perpendicular to the fiber axis are the
simplest idealisation of the flaw shape present in fibers.
The problem can then be solved with a 2-dimensional
linear elastic fracture mechanics approach. For a sharp
surface flaw, where the flaw size is not considered small
compared to the radius of the glass fiber R, the strength
σTS and the flaw depth, c, are related by

σTS = 1

Y (c, R)
KIC(πc)−1/2, (11)

where Y (c, R) is a factor depending on the crack ge-
ometry and its size in relation to the fiber radius, and
KIC is the critical stress intensity factor appropriate for
brittle fracture. The latter depends on the material only,
and a typical value for borosilicate glass is given with
KIC = 0.76 MPa m1/2 [18]. For the simplified cases of
a semi-circular flaw in an infinite body, Y can be con-
sidered constant with a value of Y = 2/π [19], while
for straight surface cracks in an infinite body the factor
was determined to Y = 1.126 [20]. Levan and Royer
[21] derived the dependence of the geometric factor Y
as a function of flaw depth c and fiber radius R numer-
ically (see Fig. 10) for these two cases. For small flaws

Figure 10 Geometry factor Y in tension at the deepest point for different
crack shapes (after Levan and Royer [21]).

TABLE V Calculated flaw depths from strength measurements (de-
pending on flaw geometry)

Semi-circular crack shape Straight surface crack
Strength
(MPa) Y Flaw depth (nm) Y Flaw depth (nm)

1400 0.678 204 1.129 74
1200 0.681 275 1.130 100

700 0.706 753 – –
450 0.750 1615 – –

in an infinite body (c/R → 0), the resulting value for
semi-circular flaws is about 5% higher than the forego-
ing analytical value of 2/π , while the numerical value
for the straight surface crack agrees very well within
an error of 0.4%. This accuracy is found sufficient for
the following calculations. The value for Y increases
nonlinearly as the size of the flaw increases compared
to the fiber radius (c/R → 1).

From Fig. 3, the threshold failure stress for improving
the fiber performance due to sizing was established in
the range of 1200–1400 MPa. Applying Equation 11 for
this strength range yields results of approximately 200–
280 nm for the corresponding semi-circular threshold
flaw size, c. Assuming straight surface cracks, on the
other hand, determines the threshold flaw size to around
75–100 nm, which is considerably lower for the same
stress range (see Table V). Considering furthermore
that the sizing complexity for the commercial sizing
on the fiber is significantly higher due to its variety of
components, the filling of surface flaws by the silane
coupling agent might be more inhibited. We therefore
consider the first threshold flaw size of 200–270 mm
for semi-circular flaws to be in better agreement with
the chemical considerations, and Equation 11 with the
geometry factor Y for semi-circular flaws is applied in
the following. Semi-circular flaws, as a result of grind-
ing during surface preparation, have furthermore been
observed directly at fracture initiation sites of 3-point
bending specimens made from various glass substrates
[10].

It is expected that most of flaws were introduced dur-
ing the fiber manufacture, and are subsequently covered
and filled by the sizing. It is therefore of interest to cal-
culate the corresponding flaw depths c to estimate the
reduction in flaw depth by the sizing. The fiber strengths
in the low strength range in Fig. 3 shift by an average
250 MPa. To find the largest filling efficiency of the
sizing, we consider values in the order of 450 MPa (un-
sized) and 700 MPa (sized), which correspond to the
lowest strengths measured. Equation 11 yields a flaw
depth of 1615 nm for the corresponding fiber strength
of 450 MPa (see Table V). It should be noted that the ge-
ometry factor Y as calculated in Table V starts to play
a significant role in the calculations at this flaw size
(c/R ≈ 0.2), and should not be neglected. Applying
Equation 11 to calculate the flaw depth for the low
strength, but sized fibers of 700 MPa leads to an “equiv-
alent” flaw depth about 750 nm. The term “equivalent”
is introduced according to Fig. 9b, as the framework
of linear elastic fracture mechanics requires some sim-
plifications: (1) the different material properties of the
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filling silane coupling agent network are not consid-
ered, (2) only highly cross-linked regions act as crack
fillers and (3) the crack is assumed to remain sharp.
These simplifications are assumed to play a minor role
in the calculation, and the “equivalent” flaw depth can
be considered similar to the depth of the filled flaw. It
becomes evident that the sizing is able to reduce the
maximum flaw depth considerably to nearly half of the
original flaw depth. The research undertaken clearly
indicates the beneficial effect of the fiber sizing on the
surface quality of glass fibers. However, the presence
of surface flaws also suggests that reduction in the flaw
size, and hence strength improvement of the fibers, is
possible by focussing on the processing steps related to
the fiber surface.

6. Conclusions
Although the tensile strengths of glass fibers have been
studied extensively, this paper provides a clear link be-
tween improved fiber strength and surface treatment
by direct characterisation of the fracture surfaces after
testing.

The fracture surface of the glass fiber ends showed
clearly that fracture originated from surface flaws. A
Weibull plot of the fiber strength distribution showed
similar high strengths for sized and unsized fibers, but
a clear decrease in the low strength range for unsized
fibers compared to sized fibers. A correlation of the
chemical molecule size of the coupling agent and the
threshold fiber strength, above which no improvement
by surface treatment was achieved, led to the conclu-
sion of semi-circular rather than straight cracks on the
fiber surface. Overall, based on the above results, it
was found likely for the sizing to fill up severe surface
flaws. Linear elastic fracture mechanics determined the
reduction of the flaw depth to be around 800 nm for the
sized, low strength fibers.
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